Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomed Pharmacother ; 158: 114083, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2176762

ABSTRACT

COronaVIrus Disease 2019 (COVID-19) is a newly emerging infectious disease that spread across the world, caused by the novel coronavirus Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Despite the advancements in science that led to the creation of the vaccine, there is still an urgent need for new antiviral drugs effective against SARS-CoV-2. This study aimed to investigate the antiviral effect of Paulownia tomentosa Steud extract against SARS-CoV-2 and to evaluate its antioxidant properties, including respiratory smooth muscle relaxant effects. Our results showed that P. tomentosa extract can inhibit viral replication by directly interacting with both the 3-chymotrypsin-like protease and spike protein. In addition, the phyto complex does not reduce lung epithelial cell viability and exerts a protective action in those cells damaged by tert-butyl hydroperoxide , a toxic agent able to alter cells' functions via increased oxidative stress. These data suggest the potential role of P. tomentosa extract in COVID-19 treatment, since this extract is able to act both as an antiviral and a cytoprotective agent in vitro.


Subject(s)
COVID-19 , Humans , Antiviral Agents/therapeutic use , SARS-CoV-2 , Antioxidants/pharmacology , COVID-19 Drug Treatment , Plant Extracts/pharmacology , Muscle, Smooth
2.
J Ethnopharmacol ; 280: 114488, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1397458

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has a long history in the prevention and treatment of pandemics. The TCM formula Lung Cleansing and Detoxifying Decoction (LCDD), also known as Qing Fei Pai Du Decoction, has been demonstrated effective against Coronavirus Disease 2019 (COVID-19). AIM OF THE STUDY: This work aimed to elucidate the active ingredients, targets and pathway mechanism of LCDD related to suppression of inflammatory, immunity regulation and relaxation of airway smooth muscle for the treatment of COVID-19. MATERIALS AND METHODS: Mining chemical ingredients reported in LCDD, 144 compounds covering all herbs were selected and screened against inflammatory-, immunity- and respiratory-related GPCRs including GPR35, H1, CB2, B2, M3 and ß2-adrenoceptor receptor using a label-free integrative pharmacology method. Further, all active compounds were detected using liquid chromatography-tandem mass spectrometry, and an herb-compound-target network based on potency and content of compounds was constructed to elucidate the multi-target and synergistic effect. RESULTS: Thirteen compounds were identified as GPR35 agonists, including licochalcone B, isoliquiritigenin, etc. Licochalcone B, isoliquiritigenin and alisol A exhibited bradykinin receptor B2 antagonism activities. Atractyline and shogaol showed as a cannabinoid receptor CB2 agonist and a histamine receptor H1 antagonist, respectively. Tectorigenin and aristofone acted as muscarinic receptor M3 antagonists, while synephrine, ephedrine and pseudoephedrine were ß2-adrenoceptor agonists. Pathway deconvolution assays suggested activation of GPR35 triggered PI3K, MEK, JNK pathways and EGFR transactivation, and the activation of ß2-adrenoceptor mediated MEK and Ca2+. The herb-compound-target network analysis found that some compounds such as licochalcone B acted on multiple targets, and multiple components interacted with the same target such as GPR35, reflecting the synergistic mechanism of Chinese medicine. At the same time, some low-abundance compounds displayed high target activity, meaning its important role in LCDD for anti-COVID-19. CONCLUSIONS: This study elucidates the active ingredients, targets and pathways of LCDD. This is useful for elucidating multitarget synergistic action for its clinical therapeutic efficacy.


Subject(s)
Biosensing Techniques/methods , COVID-19 Drug Treatment , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Animals , Cell Line, Tumor , Chalcones/pharmacology , Cricetulus , Drugs, Chinese Herbal/analysis , Ephedrine/pharmacology , HEK293 Cells , Humans , Immunity/drug effects , Inflammation/metabolism , Lung Diseases/metabolism , Muscle, Smooth/drug effects , Receptors, G-Protein-Coupled/metabolism , Respiration/drug effects , Signal Transduction/drug effects
3.
Int J Mol Sci ; 22(11)2021 May 22.
Article in English | MEDLINE | ID: covidwho-1244040

ABSTRACT

The COVID-19 pandemic has established an unparalleled necessity to rapidly find effective treatments for the illness; unfortunately, no specific treatment has been found yet. As this is a new emerging chaotic situation, already existing drugs have been suggested to ameliorate the infection of SARS-CoV-2. The consumption of caffeine has been suggested primarily because it improves exercise performance, reduces fatigue, and increases wakefulness and awareness. Caffeine has been proven to be an effective anti-inflammatory and immunomodulator. In airway smooth muscle, it has bronchodilator effects mainly due to its activity as a phosphodiesterase inhibitor and adenosine receptor antagonist. In addition, a recent published document has suggested the potential antiviral activity of this drug using in silico molecular dynamics and molecular docking; in this regard, caffeine might block the viral entrance into host cells by inhibiting the formation of a receptor-binding domain and the angiotensin-converting enzyme complex and, additionally, might reduce viral replication by the inhibition of the activity of 3-chymotrypsin-like proteases. Here, we discuss how caffeine through certain mechanisms of action could be beneficial in SARS-CoV-2. Nevertheless, further studies are required for validation through in vitro and in vivo models.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/diet therapy , Caffeine/pharmacology , Drug Repositioning/methods , Muscle, Smooth/drug effects , SARS-CoV-2/drug effects , COVID-19/metabolism , COVID-19/physiopathology , Humans , Immunologic Factors/pharmacology , Molecular Dynamics Simulation , Muscle, Smooth/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism
4.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: covidwho-1011560

ABSTRACT

The effects of airway inflammation on airway smooth muscle (ASM) are mediated by pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). In this review article, we will provide a unifying hypothesis for a homeostatic response to airway inflammation that mitigates oxidative stress and thereby provides resilience to ASM. Previous studies have shown that acute exposure to TNFα increases ASM force generation in response to muscarinic stimulation (hyper-reactivity) resulting in increased ATP consumption and increased tension cost. To meet this increased energetic demand, mitochondrial O2 consumption and oxidative phosphorylation increases but at the cost of increased reactive oxygen species (ROS) production (oxidative stress). TNFα-induced oxidative stress results in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and mitochondria of ASM. In the ER, TNFα selectively phosphorylates inositol-requiring enzyme 1 alpha (pIRE1α) triggering downstream splicing of the transcription factor X-box binding protein 1 (XBP1s); thus, activating the pIRE1α/XBP1s ER stress pathway. Protein unfolding in mitochondria also triggers an unfolded protein response (mtUPR). In our conceptual framework, we hypothesize that activation of these pathways is homeostatically directed towards mitochondrial remodeling via an increase in peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression, which in turn triggers: (1) mitochondrial fragmentation (increased dynamin-related protein-1 (Drp1) and reduced mitofusin-2 (Mfn2) expression) and mitophagy (activation of the Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin mitophagy pathway) to improve mitochondrial quality; (2) reduced Mfn2 also results in a disruption of mitochondrial tethering to the ER and reduced mitochondrial Ca2+ influx; and (3) mitochondrial biogenesis and increased mitochondrial volume density. The homeostatic remodeling of mitochondria results in more efficient O2 consumption and oxidative phosphorylation and reduced ROS formation by individual mitochondrion, while still meeting the increased ATP demand. Thus, the energetic load of hyper-reactivity is shared across the mitochondrial pool within ASM cells.


Subject(s)
Homeostasis , Inflammation/physiopathology , Mitochondria/physiology , Muscle, Smooth/physiology , Organelle Biogenesis , Protein Unfolding , Unfolded Protein Response , Animals , Humans , Muscle, Smooth/cytology , Oxidative Stress , Oxygen Consumption , Tumor Necrosis Factor-alpha/metabolism
5.
Eur J Immunol ; 51(4): 893-902, 2021 04.
Article in English | MEDLINE | ID: covidwho-986037

ABSTRACT

The aim of this study is to evaluate the blood level of anti-heart antibodies (AHA) and its correlation with clinical outcomes in patients with severe and moderate coronavirus disease 2019 (COVID-19). The study included 34 patients (23 males; mean age 60.2 ± 16.6 years) with COVID-19 pneumonia. Besides standard medical examination, the AHA blood levels were observed, including antinuclear antibodies, antiendothelial cell antibodies, anti-cardiomyocyte antibodies (AbC), anti-smooth muscle antibodies (ASMA), and cardiac conducting tissue antibodies. Median hospital length of stay was 14 [13; 18] days. AHA levels were increased in 25 (73.5%) patients. Significant correlation (p < 0.05) of AHA levels with cardiovascular manifestations (r = 0.459) was found. AbC levels correlated with pneumonia severity (r = 0.472), respiratory failure (r = 0.387), need for invasive ventilation (r = 0.469), chest pain (r = 0.374), low QRS voltage (r = 0.415), and levels of C-reactive protein (r = 0.360) and lactate dehydrogenase (r = 0.360). ASMA levels were found to correlate with atrial fibrillation (r = 0.414, p < 0.05). Antinuclear antibodies and AbC levels correlated with pericardial effusion (r = 0.721 and r = 0.745, respectively, p < 0.05). The lethality rate was 8.8%. AbC and ASMA levels correlated significantly with lethality (r = 0.363 and r = 0.426, respectively, p < 0.05) and were prognostically important. AHA can be considered as part of the systemic immune and inflammatory response in COVID-19. Its possible role in the inflammatory heart disease requires further investigation.


Subject(s)
Antibodies, Antinuclear/blood , COVID-19/immunology , COVID-19/pathology , Myocytes, Cardiac/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Antinuclear/immunology , Atrial Fibrillation/pathology , Autoantibodies/blood , Autoantibodies/immunology , C-Reactive Protein/analysis , Endothelial Cells/immunology , Female , Heart/physiopathology , Humans , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Muscle, Smooth/immunology , Myocardium/immunology , Pericardial Effusion/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL